期刊专题

10.3969/j.issn.1671-1122.2022.01.008

基于极限树特征递归消除和LightGBM的异常检测模型

引用
入侵检测数据维数大、数据样本不均衡、数据集分散性大的问题严重影响分类性能,为了解决该问题,文章提出基于极限随机树的特征递归消除(Extra Trees-Recursive Feature Elimination,ET-RFE)和LightGBM(LGBM)的入侵检测方法.首先对网络数据进行独热编码重构,在数据级层面均衡少量样本的攻击类别;其次,使用基于ET-RFE对流量特征进行降维处理,寻找含有信息量最大的最优特征子集;最后,将得到的最优特征子集作为LGBM输入数据集进行分类训练,并利用贝叶斯算法对LGBM参数进行优化.实验采用真实的网络流量数据集UNSW-NB15,通过与随机森林(RF)、XGboost算法和GALR-DT算法比较可得,文章所提方法能够有效提高检测率,并对小样本攻击类型实现有效的召回率.

类不平衡;入侵检测;LightGBM;特征递归消除

TP309(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金;河北省自然科学基金;博士后科研择优资助项目

2022-02-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

64-71

暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2022,(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn