期刊专题

10.3969/j.issn.1671-1122.2019.05.002

生成式对抗网络图像增强研究综述

引用
近年来,生成式对抗网络(GAN)为图像增强提供了新的技术和手段,具有比传统深度学习更强大的特征学习和表达能力,在图像增强领域取得了显著成功.文章首先介绍了GAN模型的基本思想和原理,分析了GAN各个变体改进的方式及优缺点;其次从图像质量提高、图像生成、图像补全和其他图像处理的应用等方面分析了GAN应用于图像增强的研究现状;最后归纳总结了GAN模型与其在图像增强中面临的问题,并对问题的解决方案及未来应用进行了总结展望.

生成式对抗网络、深度学习、生成模型、图像增强

TP309(计算技术、计算机技术)

国家自然科学基金61472097;黑龙江省自然科学基金F2018011

2019-06-21(万方平台首次上网日期,不代表论文的发表时间)

共12页

10-21

相关文献
评论
暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2019,(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn