运用重复交易模型编制综合指数中的多重共线性问题:基于参数改进的解决方法
编制综合指数是科学监测现代经济社会发展的重要途径和技术手段.我国的宏观指标以"小样本、短时间"为特征,重复交易模型在其编制综合指数中应用广泛.而在重复交易模型编制综合指数的过程中通常面临严重的多重共线性问题.处理多重共线性的方法有消除解释变量的相关性、扩大样本量避免选择误差、重新确定模型形式和参数改进方法等,前三种在重复交易模型编制综合指数中并不适用.文章以最小二乘估计为基础,从参数改进思路出发,探讨区别于岭回归的处理多重共线性的方法.通过重复交易模型的可估模型,寻找参数的可用估计,为处理其中的多重共线性问题提供新的思路和视角.最后,以2010年至2017年全国科技活动产出综合指数为例,通过足够小的k可行值编制综合指数,并将其与传统岭回归方法、主成分回归方法相比,讨论该方法在处理重复交易模型共线性问题的有效性和适用性,进一步体现本文处理重复交易模型多重共线性方法的应用价值.
重复交易模型、多重共线性、最小二乘估计
42
F222.1(经济计算、经济数学方法)
国家自然科学基金;国家自然科学基金;上海市哲学社会科学规划青年项目;上海市科技发展基金资助软科学研究基地——上海市科技统计与分析研究中心项目
2022-07-22(万方平台首次上网日期,不代表论文的发表时间)
共14页
1434-1447