期刊专题

数据缺失的小样本条件下BN参数学习

引用
引入支持向量机回归,提出具有数据修补功能的贝叶斯网络参数学习算法.该算法利用贝叶斯网络各观测节点不同时刻下的观测信息,在无先验信息约束下,通过样本回归对缺失数据进行修复.在获得的完整数据基础上利用最大似然估计完成贝叶斯网络参数估计.仿真结果表明,在有数据缺失的小样本情况下,该参数学习方法与标准EM算法相比,能够有效的提高参数学习效率以及推理结果的精度.

贝叶斯网络、数据缺失、支持向量机回归、参数学习、最大似然估计

31

TP181(自动化基础理论)

国家自然科学基金60774064

2011-04-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

172-177

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程理论与实践

1000-6788

11-2267/N

31

2011,31(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn