期刊专题

具有不同到达时间的差异工件批调度问题的蚁群聚类算法

引用
研究具有不同到达时间的差异工件在单机环境下的批调度问题.通过引入工件单元的概念并对分批约束进行松弛,提出了该问题的一个新的下界,证明了该下界的有效性.将蚁群算法和聚类算法相结合,提出了一种基于多阶段聚类的蚁群聚类算法ACC(Ant colony clustering).算法首先利用К-均值聚类将工件分簇,在簇内部通过蚁群算法搜索分批,最后提出一个全局优化算法对局部分批结果进行合成和优化.克服了蚁群算法随着工件规模增大求解时间过长的问题,适合于求解大规模算例.实验结果表明:与现有的启发式规则LPTBFF(Longest processing time&batch first fit)和HGA(Hybrid Genetic algorithm)算法相比,该算法求解效果更好.

调度、批处理机、聚类、蚁群算法、组合优化

30

TP301(计算技术、计算机技术)

创新研究群体科学基金70821001;国家自然科学基金70671096;国家杰出青年基金B类70629002;博士点基金项目200803580024

2010-12-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

1701-1709

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程理论与实践

1000-6788

11-2267/N

30

2010,30(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn