期刊专题

群体研讨支持系统中研讨主题的自动可视化聚类研究

引用
群体研讨支持系统(Group Argument Support Systems, GASS)的匿名、并行输入及自动化记录群体发言的特征,在辅助群体产生大量有价值观点的同时,也常常导致"信息过载"和"知识断层".介绍了一个自动化聚类工具来增强群体的认知能力并提高电子会议的效率.首先识别了GASS环境下自动化主题聚类的一些挑战并回顾了相关研究,结合GASS的研讨模式、研讨文本特征及中文文本分析的要求,给出了中文分词、停词表处理以及有效词语识别的文本分析技术.提出基于主题分析的特征向量选择方法,并基于自组织映射的神经网络思想,用Java语言设计并开发了一个自动聚类工具.实验表明,该工具可以达到0.28的聚类准确率,0.35的聚类全面率,产生0.83的聚类错误率.

群体研讨支持系统、文本聚类、自组织映射神经网络、可视化、信息过载

18

C934(管理学)

国家自然科学基金重大资助项目70533030

2009-09-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

325-331

暂无封面信息
查看本期封面目录

系统管理学报

1005-2542

31-1977/N

18

2009,18(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn