期刊专题

10.13718/j.cnki.xdzk.2020.12.003

基于一维密集连接卷积网络的故障诊断研究

引用
近年来,由于深度学习的不断发展,基于数据驱动的轴承故障诊断被广泛研究,卷积神经网络(CNN)等深度神经网络模型逐渐被应用到故障诊断中.针对传统方法人工提取故障特征困难,深层CNN网络模型训练效率低,过拟合严重的问题,提出了一种基于一维密集连接卷积网络的轴承故障诊断模型.轴承的一维振动数据作为输入,利用卷积网络自动提取故障特征信息,采用密集连接机制实现高层次特征与低层次特征相结合,从而更有效地提取故障特征信息.通过批归一化等方法避免过拟合现象,最后利用SoftMax层对故障进行分类,从而实现智能故障诊断.对凯斯西储大学轴承数据集及高铁轮对轴承数据集上的不同故障类型的实测数据进行实验,实验结果表明,该方法在数据集上的准确率均能达到98%以上,能有效识别故障类型,具有一定的工程应用价值.

深度学习、卷积网络、密集连接、故障诊断

42

TH133.33;TH165.3

国家自然科学基金项目11972236,11790282

2021-01-05(万方平台首次上网日期,不代表论文的发表时间)

共9页

25-33

暂无封面信息
查看本期封面目录

西南大学学报(自然科学版)

1673-9868

50-1189/N

42

2020,42(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn