期刊专题

10.13718/j.cnki.xdzk.2020.01.017

本体稀疏矩阵学习以及在相似度计算中的应用

引用
在大数据背景下,本体所包含的概念越来越多,其结构也越来越复杂.这要求其对应的本体算法能高效地降低计算的维度,进而减少计算复杂度.将原有的本体稀疏向量学习模型进行扩展,提出本体稀疏矩阵学习模型.通过矩阵导数计算设计一种迭代算法来获取逼近最优解.实验表明新算法在特定的本体应用领域有较高的效率.

本体、相似度计算、本体映射、稀疏矩阵

42

TP391(计算技术、计算机技术)

国家自然科学基金项目;云南省科技厅高校联合面上项目

2020-05-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

118-123

暂无封面信息
查看本期封面目录

西南大学学报(自然科学版)

1673-9868

50-1189/N

42

2020,42(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn