期刊专题

10.3969/j.issn.1009-5195.2022.06.006

基于系统性文献综述的多模态学习分析研究进展与前瞻

引用
多模态学习分析是指利用"多模态"的思想和方法对学习者的内在学习状态、特征与变化进行深度诠释,旨在挖掘学习规律、优化学习过程、促进精准教学.在教育大数据研究范式下,多模态学习分析应运而生并形成了诸多研究成果.运用系统性文献综述方法对国内外多模态学习分析相关研究进行梳理发现:当前多模态学习分析研究聚焦于数据采集、数据融合和数据建模三大方面.在数据采集上,得益于智能感知技术的发展,文本、语音、动作、表情、眼动、生理等模态数据备受关注且获取方式愈加便捷;在数据融合上,主要以数据层融合、特征层融合、决策层融合为主,因应深度学习算法的发展,混合式融合初见端倪;在数据建模上,涌现出面向知识、认知、情感、交互状态的学习者模型,且基于多元学习状态的整体性模型日益受到重视.未来多模态学习分析研究应加强情境感知,实现场景数据的混合采集;深挖理论基础,促进数据融合的科学精准;重视情境依存,强化数据建模的情境适用.

多模态学习分析、数据融合、数据建模、学习者模型、系统性文献综述

34

G434(电化教育)

广东省高等教育教学改革项目;华南师范大学挑战杯金种子培育项目

2022-12-02(万方平台首次上网日期,不代表论文的发表时间)

共10页

54-63

相关文献
评论
暂无封面信息
查看本期封面目录

现代远程教育研究

1009-5195

51-1580/G4

34

2022,34(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn