期刊专题

10.19850/j.cnki.2096-4706.2023.19.036

基于隐私推断Non-IID联邦学习模型的后门攻击研究

引用
联邦学习安全与隐私在现实场景中受数据异构性的影响很大,为了研究隐私推断攻击、后门攻击与数据异构性的相互作用机理,提出一种基于隐私推断的高隐蔽后门攻击方案.首先基于生成对抗网络进行客户端的多样化数据重建,生成用于改善攻击者本地数据分布的补充数据集;在此基础上,实现一种源类别定向的后门攻击策略,不仅允许使用隐蔽触发器控制后门是否生效,还允许攻击者任意指定后门针对的源类别数据.基于MNIST、CIFAR 10 和YouTube Aligned Face三个公开数据集的仿真实验表明,所提方案在数据非独立同分布的联邦学习场景下有着较高的攻击成功率和隐蔽性.

联邦学习、非独立同分布数据、后门攻击、隐私推断攻击

7

TP309;TP181;TP393(计算技术、计算机技术)

国防基础科研项目;上海市科委科技创新行动计划;上海市科委科技创新行动计划

2023-11-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

167-171

暂无封面信息
查看本期封面目录

现代信息科技

2096-4706

44-1736/TN

7

2023,7(19)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn