期刊专题

10.19850/j.cnki.2096-4706.2021.07.039

基于CNN-GRU SA模型的短期电力负荷预测研究

引用
为了解决预测模型无法充分挖掘特征等问题,提出一种基于CNN-GRU SA混合模型的短期电力负荷预测方法.通过CNN模型提取输入数据的向量特征,利用双层GRU模型学习输入特征,掌握其特征规律,Self-attention机制充分挖掘输入的特征信息,最后预测出负荷值.实验采用英格兰公开数据集,实验结果表明,相较于CNN-GRU、GRU和CNN基线模型,该模型的预测精度更高,证明了该方法的有效性.

电力负荷预测;CNN;GRU;Self-attention

5

TM715(输配电工程、电力网及电力系统)

2021-09-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

150-154

暂无封面信息
查看本期封面目录

现代信息科技

2096-4706

44-1736/TN

5

2021,5(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn