期刊专题

10.19850/j.cnki.2096-4706.2020.18.001

自注意力与域适应对抗模板重建方法

引用
该文提出一种基于卷积神经网络的模板重建方法,采用残差学习方式逐级精细化得到重建结果,通过产品图像与模板的比对完成对工业品的外观质量检测.在模板重建过程中,结合自注意力机制的关联度检索与编码融合方式,在保持细节还原效果的同时大幅减少了计算量;并提出域适应对抗学习方法,避免重建过程对缺陷信息的还原,显著控制了检测漏报率.实验结果表明了该方法的有效性与较强适应能力.

卷积神经网络、模板重建、缺陷检测、自注意力、域适应对抗学习

4

TP391.4(计算技术、计算机技术)

四川省科技计划资助项目2019YFG0189

2020-12-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

1-6

相关文献
评论
暂无封面信息
查看本期封面目录

现代信息科技

2096-4706

44-1736/TN

4

2020,4(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn