期刊专题

10.11925/infotech.2096-3467.2023.0398

融合情感-主题双通道信息的评论摘要生成模型

引用
[目的]针对传统的自动摘要无法深度融合评论的情感和主题信息,无法解决词汇不足的问题,提出一种融合情感-主题双通道信息的评论摘要生成模型.[方法]运用TextRank动态抽取评论主题句,借助PyABSA模型抽取主题句中的方面词-情感词序列拼接主题句得到最终的主题信息,并通过构建情感词集和融合主题的Bi-LSTM情感词抽取模型获取情感句,将评论原文和情感句进行拼接,与主题句形成双通道信息,分别采用注意力机制得到主题注意力和情感注意力,并将其叠加进行深度融合得到融合注意力,替换指针生成网络的单通道注意力,通过指针网络生成最终的评论摘要.[结果]所提融合双通道信息的指针生成网络与对比实验主题+PNG相比,在ROUGE-1、ROUGE-2和ROUGE-L值上分别提升2.87、6.14和2.64百分点,消融实验结果表明融合双通道信息比单通道信息在ROUGE-1、ROUGE-2和ROUGE-L上分别提升4.49、3.66和4.16百分点.[局限]未考虑到融合更细粒度的属性.[结论]所提模型能够有效融合评论的主题信息和情感信息,提升双通道信息融合的质量,在摘要生成结果中优于对比模型,生成的摘要能够包含更多的情感和主题信息.

评论摘要、双通道、注意力机制、指针生成网络

8

G35(情报学、情报工作)

2024-08-21(万方平台首次上网日期,不代表论文的发表时间)

共14页

30-43

相关文献
评论
暂无封面信息
查看本期封面目录

数据分析与知识发现

2096-3467

10-1478/G2

8

2024,8(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn