期刊专题

10.11925/infotech.2096-3467.2020.0577

融入术语与层级信息的专利关键短语抽取方法研究

引用
[目的]针对图模型方法在专利关键短语抽取过程中偏向于选取长关键短语并忽略短语所在位置的问题,提出融入术语度与层级信息的专利关键短语抽取方法,提高专利关键短语抽取的准确性.[方法]基于传统的图模型方法,提出一种新的术语度指标,以衡量候选关键短语的术语信息;根据专利文献特征,将专利划分为若干层级,提出层级权重指标,以度量候选关键短语位置信息.[结果]融入术语信息,专利关键短语抽取方法F值相对提高7.615%(纳米)、11.515%(图像识别)、9.813%(芯片)和8.839%(液晶显示).融入层级信息,专利关键短语抽取方法F值相对提高9.880%(纳米)、6.929%(图像识别)、6.099%(芯片)和5.576%(液晶显示).[局限]基于词性规则的候选关键短语选取方法会产生较多的噪声.[结论]利用术语度与层次信息的专利关键短语抽取方法能够有效提高专利关键短语抽取的准确性.

专利、关键短语抽取、术语、层级

7

G202(信息与传播理论)

2023-09-07(万方平台首次上网日期,不代表论文的发表时间)

共14页

99-112

相关文献
评论
暂无封面信息
查看本期封面目录

数据分析与知识发现

2096-3467

10-1478/G2

7

2023,7(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn