期刊专题

10.11925/infotech.2096-3467.2022.0361

基于图神经网络的技术识别链接预测方法研究

引用
[目的]通过融合了时间特征的专利IPC共现网络,训练图神经网络模型实现链接预测方法,为技术发现和知识供给提供参考.[方法]采集"隐私保护"专利数据构建专利IPC共现网络,构建节点的时间分布、时间稳定性和时间关注度特征,训练GraphSAGE模型,得到IPC节点表示及其之间的链接预测得分,为技术机会挖掘提供辅助和支持.[结果]基于图神经网络模型的链接预测方法相对于基于节点相似性的传统链接预测方法以及图游走算法Node2Vec在AUC指标上提升约30%.[局限]图神经网络作为深度学习模型在训练耗时上存在一定劣势.[结论]基于图神经网络的链接预测方法具有较高的预测精度,结合时间特征后能够捕捉节点的动态特征,为技术发现等任务提供有价值的参考.

链接预测、图神经网络、时间特征、技术发现

7

G35(情报学、情报工作)

2023-09-07(万方平台首次上网日期,不代表论文的发表时间)

共11页

15-25

相关文献
评论
暂无封面信息
查看本期封面目录

数据分析与知识发现

2096-3467

10-1478/G2

7

2023,7(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn