10.11925/infotech.2096-3467.2021.1162
融合神经网络与全局推理的实体共指消解算法
[目的]提出融合神经网络与全局推理的实体共指消解模型,解决文本内实体信息复杂,指代信息具有不明确性且分布稀疏的问题,探索更有效的共指消解算法.[方法]首先,利用神经网络模型抽取出文档中的实体和其前指词;其次,结合句子的上下文信息进行全局推理,将此推理结果加入神经网络模型中,从而提高实体共指消解的精确度.[结果]在OntoNotes 5.0数据集上进行实体共指消解实验,结果验证了所提算法的有效性.融合神经网络与全局推理的实体共指消解算法能有效地提高共指消解性能和更好地理解文本语义信息,最终在CoNLL评测标准下Fl值达到74.76%.[局限]需加入更精确的知识推理.[结论]与近几年其他的共指消解模型对比实验结果证明了所提算法的实用性与有效性.
神经网络、共指消解、实体消歧、全局推理
6
TP391(计算技术、计算机技术)
国家自然科学基金;兰州交通大学天佑创新团队项目
2022-11-28(万方平台首次上网日期,不代表论文的发表时间)
共9页
75-83