期刊专题

10.11925/infotech.2096-3467.2021.1238

基于医学领域知识和远程监督的医学实体关系抽取研究

引用
[目的]针对当前传统医学关系抽取方法存在数据标注成本高及易产生错误标签的问题,提出引入医学领域知识的远程监督医学实体关系抽取模型.[方法]该模型采用多实例策略降低远程监督标注数据的噪声影响,使用预训练语言模型MedicalBERT对远程监督标注文本进行编码,以实体在医学知识库的描述作为背景知识为医学关系抽取提供监督信号,提升文本中实体语义编码的准确性.[结果]本文模型的抽取效果与现有模型相比,准确率最高提升5.4%,召回率最高提升2.5%,F1值最高提升4.1%.此外,在并发症的抽取结果中,F1值达到93.8%.[局限]模型主要适用于句子级关系抽取,暂未考虑其在更多句子情况下的性能.[结论]引入医学领域知识的远程监督医学实体关系抽取模型具有良好的关系抽取效果,可为医学关系抽取研究提供参考.

医学关系抽取、远程监督、医学领域知识、预训练语言模型

6

G302;R-02(科学研究理论)

国家重点研发计划;江苏省重点研发计划项目

2022-10-08(万方平台首次上网日期,不代表论文的发表时间)

共10页

105-114

暂无封面信息
查看本期封面目录

数据分析与知识发现

2096-3467

10-1478/G2

6

2022,6(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn