期刊专题

10.11925/infotech.2096-3467.2021.1259

基于用户-评论-商户关系的虚假用户识别研究:用户偏差分析的视角

引用
[目的]以用户-评论-商户虚假度增强关系为基础,提出一种基于用户偏差的虚假度迭代修正模型(URS-FDIRM),以有效识别虚假用户.[方法]分别采用均值法、JS散度和KL散度三种方法测度用户内容偏差和用户行为偏差,基于马蜂窝平台的实验数据构建URS-FDIRM模型识别虚假用户.[结果]三种方法均能有效测度用户的内容偏差和行为偏差,其中,采用均值法的URS-FDIRM模型对虚假用户识别效果最佳,F1值达92.57%.[局限]该方法主要结合常规偏差度量方法提取用户偏差指标,未探索包括更多用户行为特征的偏差度量方法,一定程度影响了虚假用户识别效果.[结论]考虑用户-评论之间的内容偏差和商户-用户之间的行为偏差,能捕获更多的用户虚假度线索,揭示用户-评论-商户三者虚假度的相互关系,为异常用户行为监测提供参考.

用户偏差、增强关系、虚假用户识别、均值偏差、虚假度

6

TP391(计算技术、计算机技术)

上海市哲学社会科学规划课题一般项目;上海对外经贸大学研究生科研创新培育项目

2022-10-08(万方平台首次上网日期,不代表论文的发表时间)

共16页

55-70

暂无封面信息
查看本期封面目录

数据分析与知识发现

2096-3467

10-1478/G2

6

2022,6(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn