期刊专题

10.11925/infotech.2096-3467.2021.0525

基于CEEMDAN-BP模型的突发事件网络舆情预测研究

引用
[目的]研究突发事件网络舆情发展趋势的预测问题.[方法]综合考虑多重不确定因素对网络舆情演化的影响,本文基于数据分解的研究思路,利用自适应噪声完备集成经验模态分解、BP神经网络以及相空间重构理论构建基于CEEMDAN-BP的舆情预测方法,并结合多起突发事件案例进行实证研究.[结果]研究结果表明,CEEMDAN-BP模型能够较好地预测突发事件网络舆情的发展趋势,三个案例事件舆情预测的平均绝对误差分别为8.60%、17.98%、11.97%,其模型的预测性能优于CEEMDAN-SVM、EMD-BP、EMD-SVM、BP神经网络模型以及SVM模型.[局限]实验数据是以天为单位进行统计,未能全面反映出舆情演变的变化趋势.[结论]基于数据分解构建的CEEMDAN-BP模型能够有效预测突发事件网络舆情的发展趋势,可为相关部门做好突发事件网络舆情的管控和预警提供理论支持.

突发事件;网络舆情;CEEMDAN分解;相空间重构;BP神经网络

5

C916;G206(社会学)

国家社会科学基金17CXW012

2022-02-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

59-67

相关文献
评论
暂无封面信息
查看本期封面目录

数据分析与知识发现

2096-3467

10-1478/G2

5

2021,5(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn