期刊专题

10.3969/j.issn.1009-6582.2013.05.018

基于ANP-BP模型地铁隧道沉降预测研究

引用
文章针对地铁隧道沉降的复杂性和不确定性,深入分析了地铁隧道沉降的主要影响因素;运用网络层次分析法(ANP)的超决策(Super Decisions,下称SD)软件求解方法求得各影响因素的权重;并以此作为BP神经网络的初始权重,通过训练网络对该权重进行微调;在此基础上,提出了综合考虑各因素、各层次之间相互反馈和影响的ANP-BP模型.据此模型对西安地铁隧道沉降进行预测,通过与遗传算法和粒子群算法优化BP神经网络的对比试验分析,该模型体现出了适应性强、收敛快、精度高的优势,取得了很好的预测效果.

地铁隧道、沉降预测、网络层次分析法、BP神经网络

50

U456.3+1(隧道工程)

2013-11-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

105-111

相关文献
评论
暂无封面信息
查看本期封面目录

现代隧道技术

1009-6582

51-1600/U

50

2013,50(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn