期刊专题

10.3969/j.issn.1008-0821.2015.09.013

基于语义扩展的数字文献自动分类方法研究

引用
针对图书、期刊论文等数字文献文本特征较少而导致特征向量语义表达不够准确、分类效果差的问题,本文提出一种基于特征语义扩展的数字文献分类方法.该方法首先利用TF-IDF方法获取对数字文献文本表示能力较强、具有较高TF-IDF值的核心特征词;其次分别借助知网(Hownet)语义词典以及开放知识库维基百科(Wikipedia)对核心特征词集进行语义概念的扩展,以构建维度较低、语义丰富的概念向量空间;最后采用MaxEnt、SVM等多种算法构造分类器实现对数字文献的自动分类.实验结果表明:相比传统基于特征选择的短文本分类方法,该方法能有效地实现对短文本特征的语义扩展,提高数字文献分类的分类性能.

数字文献、短文本分类、特征选择、语义扩展、分类性能

35

G250.7(图书馆学、图书馆事业)

2015-10-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

70-74

相关文献
评论
暂无封面信息
查看本期封面目录

现代情报

1008-0821

22-1182/G3

35

2015,35(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn