期刊专题

10.3969/j.issn.1008-0821.2015.05.014

基于SVM和KNN的文本分类研究

引用
本文在详细介绍文本自动分类流程的基础上,通过实验对SVM和KNN两种算法进行比较研究,实验结果表明:SVM算法使用多项式核函数的分类准确性高于使用径向基核函数的分类准确性,且多项式核函数的分类准确性随着参数q的增大而提高;SVM采用多项式核函数进行分类的准确性普遍高于采用KNN的分类准确性;采用多项式核函数的SVM和KNN两种算法对短文本的召回率高于对长文本的召回率.

文本分类、KNN、支持向量机、核函数

35

TP301.6(计算技术、计算机技术)

四川省社科基金项目“产业技术创新战略联盟知识共享机制研究”SC13E012;四川省教育厅项目“众包式网络社区大众协同创新项目”12SB0258

2015-07-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

73-77

相关文献
评论
暂无封面信息
查看本期封面目录

现代情报

1008-0821

22-1182/G3

35

2015,35(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn