期刊专题

10.3969/j.issn.1008-0821.2015.05.013

特征融合在微博数据挖掘中的应用研究

引用
针对传统的微博聚类分析中,只单独针对微博阅读数、评论数等数据(下称微博结构化数据)进行分类或者单独针对由微博内容进行文本分词得到的分词数据(下称微博分词)进行分类的问题,本文采用了Kohonen聚类,研究结合微博结构化数据和微博分词的融合数据聚类的效果是否比单独对微博结构化数据或对微博分词聚类有所提高.实证数据实验结果显示,微博结构化数据单独聚类会出现一个类的标准差特别大(本文称为离群类),而对融合数据聚类,微博结构化数据则不会出现离群类;融合数据聚类结果对微博分词的影响不显著.

微博、聚类、融合数据

35

G250.78(图书馆学、图书馆事业)

2015-07-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

68-72,77

相关文献
评论
暂无封面信息
查看本期封面目录

现代情报

1008-0821

22-1182/G3

35

2015,35(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn