期刊专题

10.3969/j.issn.1008-0821.2015.05.009

基于隐性社会网络社团划分的推荐方法研究

引用
结合社会网络分析的推荐方法研究已成为热点.电子商务中用户的动态行为异常丰富,隐含了用户的关联关系,利用这些信息进行商品推荐是个新研究思路.分析电子商务系统中用户动态行为关联关系及用户间明确好友关系形成复杂隐性社会网络,将社团划分算法应用到该网络中,则社团内部用户联系紧密且具有更相似的消费偏好,据此设计了电子商务中社团内部的推荐方法,应用R语言进行了算法的验证并与传统的协同过滤算法进行比较.实验表明,该推荐算法提高了推荐的质量,缓解了传统推荐算法中数据稀疏性及冷启动问题等.

隐性社会网络、社团划分、个性化推荐

35

TP39(计算技术、计算机技术)

中央高校基本科研业务费专项资金资助14D110801

2015-07-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

49-53

相关文献
评论
暂无封面信息
查看本期封面目录

现代情报

1008-0821

22-1182/G3

35

2015,35(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn