期刊专题

10.3969/j.issn.1009-8097.2022.06.011

课程级时间序列分析模型研究

引用
教育时间序列能够展现学习过程随时间的变化与波动趋势,是近年来的研究热点.其中,课程级时间序列是个体级时间序列在课程层面的汇总,使用课程级时间序列可以获得比个体级时间序列更为丰富的信息.基于此,文章首先综述了教育时间序列的主流研究方法,对课程级时间序列的形成与有用性进行了分析,并提出了相应的数据分析模型.随后,文章以在线教育中的视频学习作为场景,将7341个学生所产生的个体级时间序列转换为课程级时间序列,通过实验分析了课程访问的"潮汐"现象、有潜力的辍学率预测、清晰的认知搜索意图、内容消耗的时间结构和课程聚类模式,验证了文章所提出模型的可用性.文章提出的课程级时间序列分析模型是数据驱动智慧课程建设的一项探索性试验,未来可应用于大规模在线学习中的课程搜索、分类和评价,以发现具有相似时间模式的候选课程集合.

课程级时间序列、个体级时间序列、时间模式、课程聚类、视频学习

32

G40-057(教育学)

重庆市社会科学规划项目;重庆市高等教育教学改革研究项目

2022-06-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

98-106

暂无封面信息
查看本期封面目录

现代教育技术

1009-8097

11-4525/N

32

2022,32(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn