期刊专题

10.3969/j.issn.1002-6886.2007.01.009

基于特征选择的支持向量机在故障诊断中的应用

引用
机械设备因为其本身结构的复杂性,故障很难简单地进行诊断,所以智能诊断成为一个热点的研究方向.以前的工作中多是通过神经网络甚至支持向量机等方法进行诊断,本文提出了基于支持向量机集成的特征选择算法,通过该算法可以有效去除故障数据集中所提取的不相关特征,并在新的更少特征的数据集上进行建模.在实际某柴油机故障数据上的计算表明:在通过特征选择后的数据集上利用支持向量机集成的方法建模可以得到比不进行选择更好的结果,也得到了比单个支持向量机建模更好的结果.

故障诊断、特征选择、支持向量机

TH13

2007-04-02(万方平台首次上网日期,不代表论文的发表时间)

共3页

22-24

相关文献
评论
暂无封面信息
查看本期封面目录

现代机械

1002-6886

52-1046/TH

2007,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn