期刊专题

10.16652/j.issn.1004-373x.2023.11.008

基于BoF和迹变换多特征融合的图像纹理分类研究

引用
针对BoF模型缺少几何特征、结构特征的表达,对纹理图像特征描述不充分等问题,提出一种基于BoF和迹变换多特征融合的图像纹理分类方法.首先通过关键点检测的方法获取纹理图像的碎片化图像,然后提取碎片化图像的迹变换特征和SIFT特征,通过特征交叉编码的方式和动态鉴别能量的方法,获取迹变换特征和SIFT特征的融合特征并进行特征单词优选,再以BoF模型进行特征编码,最后输入到支持向量机(SVM)中进行训练、预测和分类.实验在OutexTC10/TC12000和KTHTIPS纹理数据集上分别取得了100%、99.87%和97.6%的识别精度,结果表明该设计方法对具有几何特征、结构特征的纹理图像可以获得较好的分类效果,有效地提高了纹理分类的识别性能.

图像纹理分类、特征融合、BoF模型、迹变换、特征单词优选、特征编码、实验分析

46

TN911.73-34

国家自然科学基金;江西省核地学数据科学与系统工程技术研究中心开放基金项目

2023-06-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

43-50

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

46

2023,46(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn