期刊专题

10.16652/j.issn.1004-373x.2023.09.008

基于改进U-Net的低剂量CT图像重建方法

引用
针对低剂量CT图像重建会产生噪声和伪影的问题,在U-Net神经网络基础上引入残差学习和空间注意力机制,在编解码过程中嵌入跳跃连接为上采样增加多尺度信息,使用AAPM公开数据集CT影像进行模型训练和测试.选取峰值信噪比(PSNR)、结构相似性(SSIM)和均方根误差(RMSE)作为图像性能评价指标.在CT重建结果的测试中,与未处理的图像相比,网络模型处理后图像的PSNR、SSIM和RMSE指标平均值分别提升21.699%、2.263%和40.833%.实验结果表明,改进的U-Net神经网络模型能够减少噪声和伪影,保留了更多的纹理细节,对低剂量CT重建图像质量的提高有一定效果.

低剂量CT、图像重建、神经网络、残差网络、空间注意力机制、图像去噪

46

TN911.73-34;TP391

国家自然科学基金;国家重大科学仪器设备开发专项

2023-05-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

41-45

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

46

2023,46(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn