期刊专题

10.16652/j.issn.1004-373x.2022.07.007

sEMG多特征融合的自适应神经网络下肢运动意图识别研究

引用
针对表面肌电信号单一特征进行动作意图识别准确率低的问题,提出一种利用表面肌电信号多特征融合的动态自适应神经网络算法,实现8种下肢运动意图的准确识别.采集8种下肢动作的表面肌电信号,利用小波基函数对原始信号进行降噪处理,提取时域、小波变换和样本熵的原始特征参数.对原始特征进行主成分分析,降低特征维度,使用改进的差分进化算法优化各个特征的权重值;针对传统BP神经网络梯度下降法收敛速度慢的问题,使用动态自适应学习率的神经网络算法代替传统BP神经网络识别方法,既提升了模型的收敛速度,又提高了运动意图识别的准确率.实验结果表明,采用多特征融合的自适应神经网络模型识别8种下肢运动意图,平均识别准确率达到94.89%,比单特征的BP神经网络方法识别准确率提高10%以上,动作的识别时间只需要280 ms.该方法在300 ms内可实现对下肢动作的识别,能够达到运动意图识别的要求.

下肢运动意图识别、多特征融合、动态自适应神经网络、特征提取、下肢表面肌电信号、差分进化算法、小波分析、主成分分析

45

TN911.73-34;TP391;TH39

天津市研究生科研创新项目;天津市科技支撑计划资助项目

2022-04-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

33-40

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

45

2022,45(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn