期刊专题

10.16652/j.issn.1004⁃373x.2022.03.017

基于Attention?LSTM神经网络的公交行程时间预测

引用
传统的公交行程时间预测模型由于忽略了历史时刻中的信息,导致预测精度不理想.针对公交行程时间的时序性,提出一种基于LSTM神经网络的预测模型,并引入注意力(Attention)机制对其进行优化.首先,综合考虑多种影响因素,设计了多变量LSTM模块,将当前时刻的行程时间与历史时刻数据相关联,对其中的多维度特征进行信息提取;随后针对单一LSTM网络无法自动识别不同信息重要性的局限性,引入Attention机制,使模型聚焦重点信息、忽略冗杂信息;最后,采用实际公交GPS数据验证了该方法的有效性.实验结果表明,与五种常见方法相比,该模型具有更高的精度.

智能交通;公交行程时间预测;LSTM神经网络;Attention机制;公交GPS数据;深度学习;循环神经网络

45

TN99⁃34

国家自然科学基金71571076

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

83-87

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

45

2022,45(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn