期刊专题

10.16652/j.issn.1004⁃373x.2022.03.009

联合YOLOv4检测的候选框选择和目标跟踪方法

引用
当前的目标跟踪算法主流是基于检测的跟踪(DBT),所以检测的质量对跟踪的性能影响很大,同时在跟踪过程中易受环境干扰、光照变化、目标尺度和类别的影响,针对以上目标跟踪存在的问题,提出一种联合深度学习神经网络YOLOv4检测算法和Kalman滤波的目标跟踪算法.首先利用目标检测器对目标进行分类和边界框提取,跟踪器用于在跟踪轨迹中收集候选数据;其次,提出一种对象选择器,用来选择检测和跟踪轨迹中的最优候选框;最后,将最优候选框和跟踪轨迹利用ReID进行数据关联判断是否对跟踪轨迹进行更新.实验结果表明,联合检测的目标跟踪方法与其他几种已经成型算法对比跟踪精度达到84.9%,跟踪成功率为82.2%.同时该方法在面对环境变化、类别变化、光照强度、遮挡等复杂情况下仍然具有很好的鲁棒性.

目标跟踪;目标检测;候选框选择;YOLOv4检测算法;Kalman滤波;目标分类;边界框提取;数据关联

45

TN911.73⁃34

河北省自然科学基金F2018209289

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

43-47

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

45

2022,45(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn