10.16652/j.issn.1004-373x.2021.07.032
复杂障碍物环境下多任务目标遍历路径规划
针对传统群智能优化算法易陷入局部最优且不易解决复杂障碍物环境中多任务目标遍历路径规划问题,提出一种改进的灰狼优化算法与随机扩展树算法相结合的多任务目标遍历方法.在传统灰狼优化算法中引入非线性收敛因子以平衡全局搜索与局部开发的能力,引入布谷鸟搜索算法进行二次种群位置更新,以避免寻优陷入局部最优的情况.通过改进的灰狼优化算法对多任务目标进行遍历,求解出多任务目标搜索顺序,再通过快速扩展随机树算法根据遍历顺序避障,逐一到达任务目标规划出行走路径.实验表明,改进的灰狼优化算法模型求解能力更强,遍历路径规划更短,改进灰狼优化算法与快速扩展随机树算法的结合在复杂环境多任务目标的遍历中拥有良好的效果,不易出现局部最优的情况,且任务目标越多路径规划效果越好.
灰狼优化算法、布谷鸟搜索算法、多任务目标、路径规划、复杂环境、目标遍历
44
TN99-34;TP301.6
天津市自然科学基金;河北省自然科学基金
2021-04-08(万方平台首次上网日期,不代表论文的发表时间)
共7页
162-168