10.16652/j.issn.1004-373x.2020.21.024
基于混沌分析算法的高校毕业生就业率预测
由于高校毕业生就业率与多种因素相关,具有复杂的变化规律,当前高校毕业生就业率预测模型存在一定的不足,如与实际值间的偏差大,建模时间长等,为了减少高校毕业生就业率预测误差,设计了一种基于混沌分析算法的高校毕业生就业率预测模型.首先,收集高校毕业生就业率的历史数据,结合历史数据的随机性、混沌性变化特点,采用混沌分析算法对历史数据的随机性、混沌性变化特点进行分析,重构高校毕业生就业率的历史数据;然后,引入当前最流行的数据挖掘技术——最小二乘支持向量机构建高校毕业生就业率的历史数据模型;最后,在相同平台上与当前经典高校毕业生就业率预测模型进行对比测试.结果表明,混沌分析算法的高校毕业生就业率预测值与实际值之间的偏差相当小,高校毕业生就业率预测精度超过94%,而经典模型的高校毕业生就业率预测精度处于90%左右,同时混沌分析算法减少了高校毕业生就业率预测的建模时间,可以满足现代高校毕业生就业率数据向大规模发展方向的要求.
毕业生就业率、预测精度、数据挖掘技术、经典模型、随机性变化特点、混沌分析算法
43
TN911.1-34;TP391
2020-11-18(万方平台首次上网日期,不代表论文的发表时间)
共5页
101-105