期刊专题

10.16652/j.issn.1004-373x.2020.21.017

基于蚁群算法优化BP神经网络的政务云网络态势预测研究

引用
针对常规BP神经网络预测模型存在的预测精度低、收敛速度慢等问题,给出一种蚁群优化BP神经网络预测模型,用于政务云的网络安全态势预测.同时,对蚁群算法的信息素更新规则进行改进,并将改进后的蚁群算法应用于BP神经网络权值和阈值的优化,得到BP神经网络预测模型的最优权值和阈值,并将最优权值和阈值用于BP神经网络训练和预测.实验仿真结果表明,与传统BP神经网络安全预测模型相比,采用优化后的模型进行网络安全态势预测时,其收敛速度和预测精度都得到了明显的提高.

政务云、主动防御、BP神经网络、蚁群算法、态势预测、预测精度

43

TN711-34(基本电子电路)

国家自然科学基金61572083

2020-11-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

72-75

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

43

2020,43(21)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn