期刊专题

10.16652/j.issn.1004-373x.2020.14.045

基于NAO机器人的数字识别

引用
机器人拥有多种应用,其中较为重要的是图像识别能力,而它们的图像识别网络均需要不断的训练,才能准确地识别物体.为解决NAO机器人在室内环境下实时数字识别问题,重新设计图像识别模块,在TensorFlow中搭建两种数字识别系统,一种基于BP神经网络,另一种基于卷积神经网络(CNN).在相同的数据集上,BP神经网络与CNN在仿真中都取得了较好的效果,但在真实的机器人上运行时,CNN在有限的实验次数内得到了更好的数据,被证明是一种更有效的数字识别系统.

数字识别、NAO机器人、图像识别、BP神经网络、卷积神经网络、仿真分析

43

TN911.72-34

2020-07-20(万方平台首次上网日期,不代表论文的发表时间)

共4页

173-176

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

43

2020,43(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn