期刊专题

10.16652/j.issn.1004-373x.2020.12.020

一种改进TF-IDF的中文邮件识别算法研究

引用
传统的TF-IDF算法没有很好地分配分词的权重,对一些能代表邮件类别出现频率较大的词语计算的IDF值反而较小,IDF值小说明单词的区分能力弱而不符合实际情况.为了提升垃圾邮件识别的准确率,提出一种改进TF-IDF算法和类中心向量的中文垃圾邮件识别方法.通过改进传统的TF-IDF计算方式,在传统的TF-IDF算法里面加入卡方统计量CHI和位置影响因子能够很好地改善一些重要词汇的权重问题,并结合逆向最大匹配算法的邮件文本分词和类中心向量算法的特征选择进行垃圾邮件分类.实验结果表明,所提算法相较于传统的TF-IDF算法对垃圾邮件识别的准确率提升了约3.6%,具有一定的实际应用价值.

TF-IDF算法、邮件识别、卡方统计量、权重分配、邮件分类、仿真分析

43

TN911.23-34;TP181

国家自然科学基金项目61661030

2020-06-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

83-86

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

43

2020,43(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn