期刊专题

10.16652/j.issn.1004-373x.2019.20.010

基于协同过滤的电子商务个性化推荐算法研究

引用
采用基于使用者的协同过滤推荐算法进行电子商务个性化推荐,将获取的评价数据作为推荐算法的输入,根据使用者行为的相似性获取"最近邻居"集,统计其中各邻居对项目商品的评价分数,并以使用者对项目商品的评分形式和使用者关注度最高的多个项目商品推荐列表形式进行项目商品推荐.在获取"最近邻居"集的过程中,通过使用者特征集提升电子商务推荐系统推荐最近邻居的准确度,利用兴趣度随时间变化函数修正使用者评价矩阵,从使用者特性和兴趣两方面对协同过滤推荐算法进行个性化改进.研究结果表明,所提算法推荐项目商品所需时间始终低于对比算法,且采用该推荐算法后电子商务平台交易成功率由38.4%提升至87.2%.

电子商务、个性化推荐、协同过滤、商品推荐、个性化改进、交易平台

42

TN99-34;TP301

山西大学商务学院2018年度院科研项目2018016

2019-10-31(万方平台首次上网日期,不代表论文的发表时间)

共4页

37-39,44

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

42

2019,42(20)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn