10.16652/j.issn.1004-373x.2019.19.036
基于DGA支持向量机的变压器故障诊断
针对基于DGA的变压器故障诊断方法在实际操作中存在的不足,提出两种解决方案:基于粒子群优化支持向量机的变压器故障诊断、基于差分进化支持向量机的变压器故障诊断.通过分析两种方案的算法原理建立支持向量机的变压器故障诊断模型,从而完成参数的优化,对得到的最优参数进行验证,获取最优的支持向量机模型.在Matlab软件平台上进行仿真实验,结果证明,采用基于粒子群优化支持向量机的变压器故障诊断结果获取的变压器故障诊断率较高;基于差分进化支持向量机的变压器故障诊断方法的误判率较低,全局寻优能力较好,相比于粒子群优化算法,差分进化支持向量机的优化精度更高.
DGA、支持向量机、变压器、故障诊断、参数优化、SVM模型
42
TN99-34
国家电网公司总部科技项目GY71-16-002
2019-10-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
154-158,163