期刊专题

10.16652/j.issn.1004-373x.2019.19.021

应用于音乐节目分类的Apriori挖掘算法设计

引用
传统Apriori挖掘算法需多次扫描数据库、多次连接频繁项集,导致挖掘效率较低,为此对Apriori挖掘算法加以改进,设计一种新的Apriori挖掘算法用于音乐节目分类.改进的Apriori挖掘算法采用莱特准则对音频数据进行野值与噪声平滑处理,改进Apriori挖掘算法的音频数据库映射令两个线性表分别负责音频数据存储和对应项存储,音频数据库扫描次数降为一次;改进Apriori挖掘算法的连接次数无需对不具备交运算能力的元素进行交运算操作,减少频繁项集连接次数.基于改进频繁项集Apriori挖掘算法挖掘频繁项集、生成音频数据关联规则,基于关联规则集构建分类器,实现音乐节目分类.实验结果显示,改进Apriori挖掘算法用于音乐节目分类的效率优势突出,准确度高.

音乐节目、节目分类、Apriori挖掘算法、分类器构建、频繁项集、关联规则

42

TN911.1-34;TP301.6

2019-10-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

90-94

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

42

2019,42(19)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn