期刊专题

10.16652/j.issn.1004-373x.2017.23.015

基于BOOSTING框架的视觉语音多模态情感识别检测方法

引用
情感识别技术是智能人机交互的重要基础,它涉及计算机科学、语言学、心理学等多个研究领域,是模式识别和图像处理领域的研究热点.鉴于此,基于Boosting框架提出两种有效的视觉语音多模态融合情感识别方法:第一种方法将耦合HMM(coupled HMM)作为音频流和视频流的模型层融合技术,使用改进的期望最大化算法对其进行训练,着重学习难于识别的(即含有更多信息的)样本,并将AdaBoost框架应用于耦合HMM的训练过程,从而得到AdaBoost-CHMM总体分类器;第二种方法构建了多层Boosted HMM(MBHMM)分类器,将脸部表情、肩部运动和语音三种模态的数据流分别应用于分类器的某一层,当前层的总体分类器在训练时会聚焦于前一层总体分类器难于识别的样本,充分利用各模态特征数据间的互补特性.实验结果验证了两种方法的有效性.

情感识别、表情识别、Boosting方法、情感数据库

40

TN911.73-34;TM417

四川省软件工程专业卓越工程师质量工程项目支持11100-14Z00327

2017-12-25(万方平台首次上网日期,不代表论文的发表时间)

共5页

59-63

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

40

2017,40(23)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn