期刊专题

10.16652/j.issn.1004-373x.2017.14.027

基于SVM邻域学习的视频目标检测方法

引用
针对传统SVM普通学习模型无法适应视频中目标姿态变化、有遮挡或复杂背景的局限性,提出一种新的SVM邻域学习模型.邻域学习是基于视频相邻帧在时间和空间上的高度相关性,每个测试帧在其相邻帧上抽取训练数据进行SVM模型的学习与更新,随着视频的更新,SVM模型将不断更新来适应目标检测的各种变化.通过大量样本在各种复杂环境下实验,采用统计学分析结果,证明SVM邻域学习比传统SVM普通学习准确率更高、鲁棒性更好.

SVM模型、邻域学习、视频目标检测、统计学分析

40

TN948.6-34

国家自然科学基金项目41374039

2017-10-20(万方平台首次上网日期,不代表论文的发表时间)

共4页

95-98

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

40

2017,40(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn