期刊专题

10.16652/j.issn.1004-373x.2017.01.027

基于属性权重的Bagging回归算法研究

引用
提出一种新的回归算法——基于属性权重的Bagging回归算法。首先使用支持向量机回归或主成分分析方法对样本数据的属性赋以一定的权值,以表明该属性在回归过程中的贡献大小;再根据不同属性的权重大小构建训练使用的多个属性子集。在构建这些属性子集的过程中,按照不同属性权重在总权重中所占比重为概率进行,使得对回归贡献大的属性有更大的可能被选入属性子集当中参与训练;最后,对这些属性子集进行训练,生成相应的多个回归子模型,这些子模型的集合就是通过基于属性权重的Bagging回归算法训练得到的最终模型。

支持向量机、属性权重、集成学习、主成份分析、回归算法

40

TN911-34;TM417

2017-03-20(万方平台首次上网日期,不代表论文的发表时间)

共5页

95-98,103

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

40

2017,40(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn