10.3969/j.issn.1004-373X.2014.03.017
改进的PCNN模型在多光谱与全色图像融合中的应用研究
介绍了PCNN模型原理,提出了基于双通道自适应的PCNN多光谱与全色图像融合算法。该算法首先将RGB空间的多光谱图像转换为HSV彩色空间,然后将HSV彩色空间中的非彩色通道(V通道)的灰度像素值和全色图像的像素灰度值分别作为PCNN-1及PCNN-2的神经元输入,利用方向性信息作为自适应链接强度系数,对非彩色通道图像和全色图像进行自适应分解,再将点火时间序列送入判决因子得到新的非彩色通道图像,最后将原多光谱图像的H通道分量、S通道分量及新的V通道分量经HSV空间逆变换获得最终的融合图像。实验结果表明,该算法不仅解决了链接强度系数自动设置的问题,而且充分考虑到图像边缘和方向特征的影响,无论在主观视觉效果,还是客观评价标准上均优于IHS、PCA、小波融合等其他图像融合算法,同时降低了计算复杂度。
遥感图像、图像融合、PCNN模型、HSV彩色空间
TN911.73-34
国家自然科学基金41174164
2014-03-12(万方平台首次上网日期,不代表论文的发表时间)
共6页
55-60