期刊专题

10.3969/j.issn.1004-373X.2014.01.008

粒子滤波算法在多传感器测量中的应用

引用
目标跟踪是粒子滤波算法在处理非线性问题的一种典型应用,但由于在线处理能力或传输条件的限制,实际应用中往往无法对多个传感器数据同时处理。据此,给出了一种基于多传感器选优的粒子滤波算法。假设每个时刻可以处理一个测量数据,该算法先采用加权的概率密度函数来评价每个传感器获得的测量值,并用粒子滤波对概率密度函数的加权进行实时更新,基于最大熵标准来选取最优测量数据进行处理。同时,最大熵标准保证了最优似然函数分布最宽,从而缓解粒子衰竭问题。通过数值仿真实验证明,该算法可以选择最优观测数据进行处理,有效降低多传感器测量中粒子滤波在线实时处理性能的要求,也较好地缓解了粒子滤波的“衰竭”问题。

粒子滤波、最大熵、传感器选择、粒子衰竭

TN911.6-34

国家自然科学基金资助项目11302175

2014-01-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

24-26,30

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

2014,(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn