期刊专题

基于粒子群优化LSSVM的模拟电路故障诊断方法

引用
针对模拟电路故障诊断中存在的诊断信息不充分、参数容差及元器件的非线性等问题,利用最小二乘支持向量机(LSSVM)在小样本情况下良好的学习能力和泛化能力建立基于LSSVM的模拟电路故障分类模型.同时为提高故障诊断精度,采用粒子群优化(PSO)算法对LSSVM的参数进行优化,避免了参数选择的盲目性.最后以典型滤波器电路的故障诊断为例进行了仿真验证.实验结果证明基于PSO的LSSVM模型可有效改善遍历搜索引起的效率问题,其故障分类准确性及模型诊断效率都得到提高.

模拟电路、故障诊断、粒子群优化、最小二乘支持向量机

TN710?34;V241.4(基本电子电路)

2013-04-26(万方平台首次上网日期,不代表论文的发表时间)

35-38

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn