10.3969/j.issn.1004-373X.2009.13.065
改进的PSO算法在非线性模型参数辨识中的应用
参数辨识是过程建模的基础,对于参数辨识问题提出了许多不同的方法.针对传统模型参数辩识方法和遗传算法用于模型参数辨识时的缺点,提出一种基于微粒群优化(PSO)算法的模型参数辨识方法,利用PSO算法的强大优化能力,通过对算法的改进,将过程模型的每个参数作为微粒群体中的一个微粒,利用微粒群体在参数空间进行高效并行的搜索,以获得过程模型的最佳参数值,并将其用于对非线性系统模型的参数辨识,可有效提高参数辨识的精度和效率.该方法应用到实际例子中,获得了满意的辨识精度和效率,得到较为精确的过程模型,模型输出与实际输出基本一致,仿真结果令人满意.实例仿真结果表明,微粒群算法为非线性系统模型参数辨识提供了一种有效的途径.
微粒群算法、非线性系统、参数辨识、过程模型
32
TP18(自动化基础理论)
2009-07-29(万方平台首次上网日期,不代表论文的发表时间)
共4页
204-207