期刊专题

10.3969/j.issn.1004-373X.2009.13.065

改进的PSO算法在非线性模型参数辨识中的应用

引用
参数辨识是过程建模的基础,对于参数辨识问题提出了许多不同的方法.针对传统模型参数辩识方法和遗传算法用于模型参数辨识时的缺点,提出一种基于微粒群优化(PSO)算法的模型参数辨识方法,利用PSO算法的强大优化能力,通过对算法的改进,将过程模型的每个参数作为微粒群体中的一个微粒,利用微粒群体在参数空间进行高效并行的搜索,以获得过程模型的最佳参数值,并将其用于对非线性系统模型的参数辨识,可有效提高参数辨识的精度和效率.该方法应用到实际例子中,获得了满意的辨识精度和效率,得到较为精确的过程模型,模型输出与实际输出基本一致,仿真结果令人满意.实例仿真结果表明,微粒群算法为非线性系统模型参数辨识提供了一种有效的途径.

微粒群算法、非线性系统、参数辨识、过程模型

32

TP18(自动化基础理论)

2009-07-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

204-207

暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

32

2009,32(13)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn