期刊专题

10.3969/j.issn.1007-2322.2010.05.011

基于QPSO参数优化的WLS-SVM短期负荷预测

引用
为了解决负荷非线性特性导致的预测模型难以准确建立的问题,提出一种基于量子粒子群优化(QPSO)参数选择的加权最小二乘支持向量机(WLS-SVM)的短期负荷预测模型和方法.首先,利用量子粒子群优化方法来对模型进行训练,从而选出最优超参数.其次,采用具有良好泛化性能的WLS-SVM回归模型弥补损失的鲁棒性.文中以黑龙江电网短期负荷预测为例,将该方法与一般LS-SVM模型的预测结果进行了对比分析,结果表明此方法能明显提高预测精度.

量子粒子群优化、最小二乘支持向量机、短期负荷预测、鲁棒性

27

TM7;TP3

2011-01-28(万方平台首次上网日期,不代表论文的发表时间)

共4页

49-52

暂无封面信息
查看本期封面目录

现代电力

1007-2322

11-3818/TM

27

2010,27(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn