期刊专题

10.3969/j.issn.1001-7461.2019.04.35

基于卷积神经网络的小样本树皮图像识别方法

引用
针对在树皮图像分类过程中图像训练数据数量少、识别准确率低的问题,提出一种基于卷积神经网络的小样本树皮图像识别方法.以5种常见树种的树皮图像作为研究对象,在基于卷积神经网络的Inception_v3模型基础上,对原始数据集进行数据增强的一系列操作,扩大数据集的数量;在此基础上,对所有数据集进行白化处理,以降低数据之间的冗余性,使得特征之间相关性较低;采用ReLU激励函数和Dropout方法,防止训练时引起的过拟合现象;同时,在模型的最后添加3层全连接层,增强模型的特征表达能力,采用softmax分类器.最终确定了一个10层CNN模型:5个卷积层、2个池化层、3个全连接层.结果 表明,上述网络模型对数据集的识别准确率为94%,并且为验证本研究方法的可行性,分别在MNIST数据集、ImageNet数据集、CIFAR-10数据集进行测试,识别准确率分别为92%、90%、93%.因此,提出的方法在小样本的识别试验中具有较高的识别准确率和一定的可行性.

树皮图像、卷积神经网络、Inception_v3、小样本

34

S789.1(森林采运与利用)

2019-08-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

230-235

相关文献
评论
暂无封面信息
查看本期封面目录

西北林学院学报

1001-7461

61-1202/S

34

2019,34(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn