期刊专题

10.13338/j.issn.1674-649x.2024.04.002

深度确定性策略梯度下运动目标识别及无人机跟随

引用
针对无人机(unmanned aerial vehicle,UAV)平台采集运动目标图像信息过程中因UAV自身的飞行状态、环境的干扰、目标的随机性等原因易产生运动目标丢失等问题,提出了一种基于运动目标识别的深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法UAV跟随方法.面向高速公路的车辆目标,分析了 UAV高度、位姿与高速车辆运动之间的关系,建立了移动平台目标检测帧率的速度自适应模型,根据目标的运动状态计算能够相匹配UAV的飞行状态,实时修正飞行姿态与速度,使UAV能够保持与目标的相对位置和角度.继而基于DDPG算法价值网络估计UAV在不同状态下采取特定动作的价值,策略网络生成UAV在给定状态下采取动作的策略,给予UAV飞行高度、速度控制参数用于目标跟踪,使UAV能够根据目标的运动变化自动调节飞行状态,实现运动目标的自适应跟随.仿真实验表明:DDPG算法能够提供稳定的飞行姿态数据,为UAV的跟随任务提供了可靠的控制基础;通过在真实场景下实验验证,UAV能够实时跟踪速度范围0~33 m/s、半径为120 m的圆形面积内的地面运动目标,且在续航范围内能够实现持续稳定跟随.

四轴飞行器、高速公路、动态规划、深度确定性策略梯度、目标跟踪

38

TP273(自动化技术及设备)

陕西省自然科学基础研究计划项目;陕西省教育厅一般专项科学研究计划项目;大学生创新创业训练计划项目

2024-10-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

9-17

相关文献
评论
暂无封面信息
查看本期封面目录

西安工程大学学报

1674-649X

61-1471/N

38

2024,38(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn