期刊专题

10.13338/j.issn.1674-649x.2021.05.015

融合文本信息的多模态深度自编码器推荐模型

引用
针对以评分信息做辅助推荐时数据稀疏和深层次语义信息无法学习的问题,提出了一种新的推荐模型.以隐式反馈评分矩阵作为深度自编码器的原始输入,通过编码解码操作,实现评分信息的特征学习;用户电影类型矩阵为模型嵌入层的输入,经过平坦层和全连接层的操作,实现类型文本信息的特征学习;同时,使用BERT+BiLSTM结构对电影标题文本进行上下文信息的特征提取和特征学习.3种特征融合后,通过自编码器的处理得到预测评分.以Movielens 1M和Mov-ielens 100k为数据集,平均绝对误差和均方误差为评价指标,SVD、PMF、PMMMF、SCC、RMbDn、Hern为对比模型.结果 表明:本文模型在MAE上分别降低到0.0458和0.0460,在MSE上分别降低到0.0273和0.0390,优于对比算法,新的推荐模型性能提升效果较好.

推荐算法;BERT;BiLSTM;深度自编码器;文本信息

35

TP391(计算技术、计算机技术)

陕西省教育厅科研计划项目;河南省电子商务大数据处理与分析重点实验室开放课题资助项目

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

100-106

相关文献
评论
暂无封面信息
查看本期封面目录

西安工程大学学报

1674-649X

61-1471/N

35

2021,35(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn